Test Plan

Test Strategy

This document aims to explain our testing strategy and why each strategy was chosen, we will
also record each test and the results of each in the same place.

Our testing strategy is split into four stages, unit testing, integration testing, requirements testing,
and alpha testing. Unit testing is when we test each module of the code to make sure they
function as desired, and integration testing is when we will combine the modules together and
test that they function as desired. Requirements testing is when we compare our program to the
requirements, and alpha testing is when we simulate actual use to find bugs.

We plan to use an agile development model, so testing for each module or functionality is carried
out once we have developed that module or functionality. We then do this for each module
communicating our ideas with our client after every few implementations.

Alex will be designated the task of overviewing the testing of the game, the people responsible for
programming, Steven, Huw and Josh will have responsibility in testing their produced modules.
Gareth will be overseeing the integration testing stage this is to spread the workload of the
assessment evenly.

We will be conducting regular code checks and reviews, whilst not necessarily a form of testing,
these sessions will be used to make sure our software is meeting the requirements, that we are
on schedule and that our programming skills are satisfactory. We can also check the clarity of
the code and make sure it is readable.

Unit Testing

The first method of testing we will be using is unit testing, this is when we test each unit (in this
case each class) to make sure each function works correctly. This is a gray box test, as the
tests will be written and carried out without needing to look at the class’ code but with knowledge
of how they function and their context. We will use JUnit [1] to carry out our unit tests, this will
allow us to create testing classes that we can specify inputs to the class’ functions and see if the
outputs match our expectations.

This method of testing was chosen as we used Java to program the game, which is an object
oriented language meaning the code will be split into convenient classes. These classes can
each be tested individually to make testing simple and less overwhelming. We then can expect
less issues when each of the classes are integrated.

Unit Testing Procedure

In parallel to writing the code we will construct JUnit test classes to test each class. Once the
game classes have been completed, we will run the JUnit tests with these classes to ensure the
game classes function as intended. Creating unit test classes may be time consuming for many
classes as environments to simulate actual usage would have to be created, this may become
time consuming.

Submitted with this document is the unit testing table which we will use to record each unit test,
class under test, function under test and status of the test. This document is titled “Unit Testing”.

Examples of JUnit test classes can be found in the appendix as items 1, 2 and 3.

Integration Testing

Once we are happy each of the modules of our code are working correctly we will combine them
together using the “big bang” approach. In practice we expect our units will be developed
alongside other units and this approach may be unrealistic.

Submitted alongside this document is the integration testing table which we will use to record
each test, the expected and actual results of the test. This document is titled “Integration
Testing”.

For each test, a description is provided which outlines the basic action that will be performed.
These actions are designed to test game functionality, and each one requires the correct
execution of multiple sections of code. The expected result of each test is what we expect (and
want) to happen when the described action is performed. The actual result will describe the
observed behaviour of the game when the action was tried. In a successful (passed) test, the
expected and actual results should be essentially the same, indicating that the game is
functioning as it should. In a failed test, the actual result will not match the expected result, and
efforts will then have to be made through other testing methods to identify the problematic code.

It is also worth noting, that should a test fail, the test itself will have to be examined to ensure that
the expected result is indeed what should happen when the action described by the test
description field is carried out. It is possible that a misunderstanding of the game and the way it
should function could result in tests that cannot be passed, and this testing of the tests
themselves should help to avoid this.

Acceptance Testing

We chose to use an agile development model, so regular contact with our client will be made.
After each few features are implemented we intend to consult the client to make sure he is

happy with the current state of the software. The client will be acting as a client for all teams, so
our time to discuss our project will be limited.

Acceptance Testing Example

An example of the feedback from one of our client interaction sessions is shown here. This
meeting took place on the 3rd December 2013. To check that the client was happy with the
game, all of the currently implemented functions were demonstrated to him and his comments
noted as shown below.

Feedback from the client:
e Make exit points visible so the user knows where the plane has to go
e A plane under manual control should still be able to pass through waypoints and
move on to the next one
e Consider changes to game over screen
o Make the text faster so that the user doesn’t have to wait
e Make the game a little ‘lighter’
o Less gruesome
e Think about adding sound to the game
o Although this is technically a non required feature, it can be added if time
allows
e Consider showing crashes in some way
o Animation
o Sound

These comments were then discussed during a team meeting and the necessary changes
implemented, evidence of this can be found in the game itself, or in the accompanying
architecture and GUI reports.

Requirements Testing

Once the game has been written, we will need to check that the game meets all our clients
requirements. We will relate each one of the requirements with evidence in the form of
corresponding test cases. Some of the requirements will be hard to test, especially the
non-functional requirements.

Requirements Testing Procedure

During the development of the game, we will regularly conduct code reviews and checks to
compare the produced code with our requirements list.

Submitted with this document is a table we produced to relate each requirement with
observations, example, related classes and related methods. This document is titled
“‘Requirements Testing”.

Alpha Testing

When the game is near completion, we will focus our testing on finding any bugs which we may
have missed, alpha testing will be used to make sure no errors are encountered during regular
usage. Certain requirements will be hard to give a definite pass, so we will conduct periods of
alpha testing where we try and confirm we have met these requirements. Our period of Alpha
testing will begin in the last couple of weeks of the project, and testing will mostly consist of
playing the game many times.

Alpha Testing Procedure

The game will be played many times over by different members of the team, this is to test
different behaviours. Any bugs found will be reported on the issues section of our GitHub [2]
repository.

During this alpha testing, we will also attempt to get users (and testers) to perform undesirable,
but possible in the real world, actions to ensure that the game handles them correctly. These
sorts of actions are difficult to predict, and so can’t really be tested comprehensively in any other
way. Alpha testing with a large enough group of testers (especially those who are actively trying
to find bugs) should be able to find areas where the game does not perform as the user would
expect, even though the code may be ‘technically’ correct according to our other testing
methods. It will not be feasible to conduct an alpha test with a larger group of testers for this
project due to our limited time and human resources.

Below is a table we produced to log a description of each bug encountered, the classes and
methods we think are involved, the report date and the current status of the bug.

Problem Description Date Found | Solution Status
Attempting to move a 10/01/2014 | Prevent the user from moving the Fixed
corner waypoint of an corner waypoints in the aircraft’s flight
aircraft’s flight path will path.

crash the game.

Multiple parts of an aircraft’'s| 10/01/2014 | It was decided not to fix this as it would| Non -
flight path can all be moved take lots of effort to fix and it will not Issue
to a single waypoint. affect regular gameplay.

Two planes may spawn in | 11/01/2014 | This is a very rare occurrence, it was | Non -
the same corner waypoint decided to devote time to more Issue
causing them to cause the important bugs and feature additions.
game to end.
The game over screen tells | 12/01/2014 | The user is now able to press any key | Fixed
the user to “press any key to start a new game.
to continue” however the
only key that continues is
the space.
Manually controlling planes | 12/01/2014 | The plane will now not be removed, bu{ Fixed
of the edge of the screen will not be displayed, manual control
removes them from the will be exited. The plane now will
game. continue it’s flight path.
Moving the plane using the | 14/01/2014 | The user will now be able to switch Fixed
compass interface will freely between control methods.
prevent the user from using
the arrow keys for direction.
Entering manual control 14/01/2014 | It is no longer possible to modify the Fixed
whilst dragging a waypoint route of an aircraft under manual
will make a plane invisible. control, this prevents the route from

being changed.
Holding down a key when 15/01/2014 | When the game ends, any held down | Fixed
two aircraft crash will skip keys will not interrupt the game.
the game over screen.
Planes are not selectable 16/01/2014 | Clicking a plane at any altitude will now Fixed
when transitioning between select it.
altitude layers.
Selecting credits after 17/01/2014 | The game will no longer interfere with | Fixed
playing a game will crash the credits interface.
the game.
Occasionally the counter 17/01/2014 | The counter will now accurately track | Fixed
that displays the number of the number of aircraft in the airspace.
airspace in the game will be
wrong.
The user cannot change 20/01/2014 | Scrolling with the mousewheel no Fixed

altitude of a plane with the
mouse button, but scrolling
still displays a message in
the console.

longer prompts a console message.

Alpha testing will be used to monitor the frames per second of the application, to make sure we
could meet requirement NF5. And we will also make sure that the software has no issues with
the lab computers for meeting requirement F9.

References

[1] JUnit Team, JUnit 4, [Online]. Available: http://www.junit.org. [Accessed: Jan. 14, 2014]
[2] GitHub, GitHub inc. San Francisco, California.

Appendix

Appendix Item A - Aircraft Test Class

package tst;
import static org.junit.Assert.”;
import org.junit. Test;

import cls.Aircraft;
import cls.Waypoint;
import cls.Vector;

public class AircraftTest {

/I Create test aircraft
private Aircraft generateTestAircraft()
{
Waypoint[] waypointList = new Waypoint[][{new Waypoint(0, 0, true), new Waypoint(100, 100, true), new
Waypoint(25, 75, false), new Waypoint(75, 25, false), new Waypoint(50,50, false)};
Aircraft testAircraft = new Aircraft("testAircraft", "Berlin", "Dublin", new Waypoint(100,100, true), new
Waypoint(0,0, true), null, 10.0, waypointList, 1);
return testAircraft;

}

/I Test get functions
/I Test getPosition function
@Test
public void testGePosition() {
Aircraft testAircraft = generateTestAircraft();
Vector resultPosition = testAircraft.position();
assertTrue("x >=-128 and xy <= 27,y = 0, z = 28,000 or z = 30,000", ((0 == resultPosition.y()) && (128 >=
resultPosition.x()) && (-128 <= resultPosition.x()) && ((28000 == resultPosition.z()) || (30000 == resultPosition.z()))));
}
/I Test getName function
@Test
public void testGetName() {
Aircraft testAircraft = generateTestAircraft();
String name = testAircraft.name();
assertTrue("Name = testAircraft", "testAircraft" == name);
}
/] Test getOriginName function
@Test
public void testGetOriginName(){
Aircraft testAircraft = generateTestAircraft();

http://www.google.com/url?q=http%3A%2F%2Fwww.junit.org&sa=D&sntz=1&usg=AFQjCNEUUskGTOw6_hPn1RLzd_y5pHBgHw

String name = testAircraft.originName();
assertTrue("Origin name = Dublin", "Dublin" == name);

}

/I Test getDestinationName function

@Test

public void testGetDestinationName(){
Aircraft testAircraft = generateTestAircraft();
String name = testAircraft.destinationName();
assertTrue("Destination name = Berlin", "Berlin" == name);

}

/I Test getlsFinished function

@Test

public void testGetlsFinishedName()}{
Aircraft testAircraft = generateTestAircraft();
boolean status = testAircraft.isFinished();
assertTrue("Finished = false", false == status);

}

/I Test getlsManuallyControlled function

@Test

public void testlsManuallyControlled(){
Aircraft testAircraft = generateTestAircraft();
boolean status = testAircraft.isManuallyControlled();
assertTrue("Manually controlled = false", false == status);

}

/I Test getSpeed function

@Test

public void testGetSpeed(){
Aircraft testAircraft = generateTestAircraft();
double speed = (int) (testAircraft.speed() + 0.5);
assertTrue("Speed = 20", speed == 20.0);

}

Il Test getAltitudeState

@Test

public void testAltitudeState(){
Aircraft testAircraft = generateTestAircraft();
testAircraft.setAltitudeState(1);
int altState = testAircraft.altitudeState();
assertTrue("Altitude State = 1", altState == 1);

}

/I Test outOfBounds
@Test
public void testOutOfBounds(){
Waypoint[] waypointList = new Waypoint[[{new Waypoint(0, 0, true), new Waypoint(100, 100, true), new
Waypoint(25, 75, false), new Waypoint(75, 25, false), new Waypoint(50,50, false)};
Aircraft testAircraft = new Aircraft("testAircraft", "Berlin", "Dublin", new Waypoint(100,100, true), new
Waypoint(0,0, true), null, 10.0, waypointList, 1);
boolean x = testAircraft.outOfBounds();
assertTrue("Out of bounds = false", x == true);

}

/I Test set methods
/I Test setAltitudeState
@Test
public void testSetAltitudeState(}
Aircraft testAircraft = generateTestAircraft();

testAircraft.setAltitudeState(1);
int altState = testAircraft.altitudeState();
assertTrue("Altitude State = 1", altState == 1);

Appendix Item B - Vector Test Class

package tst;

import static org.junit.Assert.”;
import org.junit. Test;

import cls.Vector;

public class VectorTest {

/I Test get functions

/I Test getX function

@Test

public void testGetX() {
Vector testVector = new Vector(1.0, 1.1, 1.2);
assertTrue("x = 1.0", 1.0 == testVector.x());

}

/I Test getY function

@Test

public void testGetY() {
Vector testVector = new Vector(1.0, 1.1, 1.2);
assertTrue("y = 1.1", 1.1 == testVector.y());

}

/I Test getZ function

@Test

public void testGetZ() {
Vector testVector = new Vector(1.0, 1.1, 1.2);
assertTrue("z = 1.2", 1.2 == testVector.z());

}

/I Test magnitude function
@Test
public void testMagnitude() {
Vector testVector = new Vector(1.0, 2.0, 2.0);

}
@Test

public void testMagnitude2() {
Vector testVector = new Vector(12, 16, 21);

}

/I Test magnitudeSquared function
@Test
public void testMagnitudeSquared() {
Vector testVector = new Vector(1.0, 2.0, 2.0);

assertTrue("Magnitude = 3", 3.0 == testVector.magnitude());

assertTrue("Magnitude = 29", 29 == testVector.magnitude());

assertTrue("Magnitude = 9", 9.0 == testVector.magnitudeSquared());

}
@Test

public void testMagnitudeSquared?2() {
Vector testVector = new Vector(12, 16, 21);
assertTrue("Magnitude = 841", 841 == testVector.magnitudeSquared());

}

/I Test equals function
@Test
public void testEquals() {
Vector testVector = new Vector(1.9, 2.2, 7.4);
Vector testVector2 = new Vector(1.9, 2.2, 7.4);
assertTrue("Equals = true", testVector.equals(testVector2));
}
@Test
public void testEquals2() {
Vector testVector = new Vector(9, 4.2, 5.1);
Vector testVector2 = new Vector(9.0, 4.2, 5);
assertTrue("Equals = false", ltestVector.equals(testVector2));

}

/I Test addition function
@Test
public void testAddition() {
Vector testVector = new Vector(2.0, 2.0, 4.0);
Vector testVector2 = new Vector(1.0, 3.0, 2.0);
Vector resultVector = testVector.add(testVector2);
assertTrue("Result = 3.0, 4.0, 6.0", (3.0 == resultVector.x()) && (5.0 == resultVector.y()) && (6.0 ==
resultVector.z()));

}

@Test

public void testAddition2() {
Vector testVector = new Vector(6.0, 8.1, 16);
Vector testVector2 = new Vector(1.0, 2.0, 3.0);
Vector resultVector = testVector.add(testVector2);

assertTrue("Result = 7.0, 10.1, 19.0", (7.0 == resultVector.x()) && (10.1 == resultVector.y()) && (19.0 =

resultVector.z()));

/l Test subtraction function
@Test
public void testSubtraction() {
Vector testVector = new Vector(2.0, 3.0, 4.0);
Vector testVector2 = new Vector(1.0, 1.0, 2.0);
Vector resultVector = testVector.sub(testVector2);
assertTrue("Result = 1.0, 2.0, 2.0", (1.0 == resultVector.x()) && (2.0 == resultVector.y()) && (2.0 ==
resultVector.z()));

@Test
public void testSubtraction2() {
Vector testVector = new Vector(14.0, 6, 100);
Vector testVector2 = new Vector(1.0, 6.0, 0);
Vector resultVector = testVector.sub(testVector2);
assertTrue("Result = 13.0, 0, 100.0", (13.0 == resultVector.x()) && (0 == resultVector.y()) && (100.0 ==
resultVector.z()));

/I Test scaleBy function
@Test
public void testScaleBy()}{
Vector testVector = new Vector(1, 2, 3);
Vector resultVector = testVector.scaleBy(1.0);
assertTrue("ScaledBy = (1, 2, 3)", (1 == resultVector.x()) && (2 == resultVector.y()) && (3 ==
resultVector.z()));

10

@Test
public void testScaleBy2(){
Vector testVector = new Vector(1, 2, 3);
Vector resultVector = testVector.scaleBy(-2.0);
assertTrue("ScaledBy = (-2 , -4, -6)", (-2 == resultVector.x()) && (-4 == resultVector.y()) && (-6 ==
resultVector.z()));

}

/I Test normalise function
@Test
public void testNormalise() {
Vector testVector = new Vector(1.0, 2.0, 2.0);
Vector resultVector = testVector.normalise();
assertTrue("Normalise = 1/3, 2/3, 2/3", (1 == (resultVector.x()* 3)) && (2 == (resultVector.y()*3)) && (2 ==
(resultVector.z()*3)));

}
@Test
public void testNormalise2() {
Vector testVector = new Vector(1, 4, 8);
Vector resultVector = testVector.normalise();
assertTrue("Normalise = 1/9, 4/9, 8/9", (1 == (resultVector.x()*9)) && (4 == (resultVector.y()*9)) && (8 ==
(resultVector.z()*9)));
}

/I Test angle between function
@Test
public void testAngle() {
Vector testVector = new Vector(1, 0, 0);
Vector testVector2 = new Vector(0, 1, 0);
double angle = Math.P1/ 2;
assertTrue("Angle = pi/2", angle == testVector.angleBetween(testVector2));

Appendix Item C - Waypoint Test Class

package tst;

import static org.junit.Assert.*;
import org.junit. Test;

import cls.Waypoint;

import cls.Vector;

public class WaypointTest {

/I Test Get Functions
/I Test get position function
@Test
public void testGetPosition() {
Waypoint testWaypoint = new Waypoint(10,10, false);
Vector resultVector = testWaypoint.position();
assertTrue("Position = (10, 10, 0)", (10 == resultVector.x()) && (10 == resultVector.y()) && (0 ==
resultVector.z()));

11

/I Test isEntryOrExit function

@Test

public void testlsEntryOrExit() {
Waypoint testWaypoint = new Waypoint(10,10, false);
assertTrue("Entry/Exit = false", false == testWaypoint.isEntryOrExit());

}
@Test
public void testlsEntryOrExit2() {
Waypoint testWaypoint = new Waypoint(0, 0, true);
assertTrue("Entry/Exit = true", true == testWaypoint.isEntryOrExit());
}

/I Test mouseOver checking
@Test
public void testlsMouseOver(){
Waypoint testWaypoint = new Waypoint(5,5, true);
assertTrue("Mouse over = true", true == testWaypoint.isMouseOver(10,10));
}
@Test
public void testlsMouseOver2(){
Waypoint testWaypoint = new Waypoint(25,25, true);
assertTrue("Mouse over = false", false == testWaypoint.isMouseOver(10,10));

}

/I Test getCost function

@Test

public void testGetCost()}
Waypoint testWaypoint = new Waypoint(2, 4, false);
Waypoint testWaypoint2 = new Waypoint(2, 2, true);
double result = testWaypoint.getCost(testWaypoint2);
assertTrue("Cost = 2", 2 == result);

}@Test

public void testGetCost2(){
Waypoint testWaypoint = new Waypoint(6, 15, false);
Waypoint testWaypoint2 = new Waypoint(15, 15, true);
double result = testWaypoint.getCost(testWaypoint2);

assertTrue("Cost = 9", 9 == result);
}
/I Test getCostBetween function
@Test

public void testGetCostBetween(){
Waypoint testWaypoint = new Waypoint(2, 4, false);
Waypoint testWaypoint2 = new Waypoint(2, 2, true);
double result = Waypoint.getCostBetween(testWaypoint, testWaypoint2);
assertTrue("Cost = 2", 2 == result);
}@Test
public void testGetCostBetween2(){
Waypoint testWaypoint = new Waypoint(6, 15, false);
Waypoint testWaypoint2 = new Waypoint(15, 15, true);
double result = Waypoint.getCostBetween(testWaypoint, testWaypoint2);
assertTrue("Cost = 9", 9 == result);

12

